Optical Thin-Film Measurement Instrument (Model TF-168)

Quick and Easy Tool for Thin Film Measurement

New Span Opto-Technology Inc. 16115 SW 117th Ave. A-15, Miami, FL 33177 Tel. 786-908-8089 Fax. 786-908-8098 Email: info@new-span.com

Thin films are widely used in a variety of applications including

- dielectric coatings on optical components
- coated optical filters
- semiconductor fabrication on wafers
- liquid crystal devices
- coatings on cellphone panels

Based on interference spectral analysis of multireflection beams, this instrument functions noncontact optical measurement of thickness, refractive index, and absorption index of various thin films and coatings.

With nm measurement accuracy and convenient operation, much easier to operate than traditional ellipsometer, it is a must have device for thin film research, coating industry, and semiconductor fabrication industry.

Edit Yew Broject Operate Iools Window	1940 - 18-1 - 18-1 - 19-1					
asurement Measurement Setting	Registration			Save Setta	ng <mark>900</mark>	
Real Time Sa On Reflec	we Save tance Transmittan	te Load Reflectance	Thin Film	TF-166		
Spectrometer Setting Reflectance			Film Thickness (µm)			
	Store Dar	7.362E+5	0.20	032		
Stow Fit CN Measured 8	k Fitted Reflectance	Measured And Best Filted				
12-			Measure	-		
11				Repeat # 32		
1.0-			-			
0.9-						
0.7				d (µr	n) std.	
0.6			Film 4: ITO	- 0	0E+0	
0.5			Film 3: SiO2	- 0	0E+0	
0.4-			Film 2: MgF2	× 0	0E+0	
0.3-		Manager and Street Stre	Film 1: SiO2	0.20	32 1.4E-6	
0.2-		and the second	Substrate: Si	5		
0.0-	600 620 640 660 680 700 7	20 740 760 700 800 820 849	Plot N K	a of Film	Lower d	
	λ (nm)	Show T	PROCINIK	· Grinn	coler. 4	

Measurement Features

- Substrate refractive index and absorption index measurement
- Film thickness measurement, mean and standard deviation
- Film material refractive index and absorption index evaluation
- Saving of measured spectral dependent reflectance data
- Data loading of previously saved reflectance data
- Statistics of measurement results
- User friendly cursor controlled measurement of computed refractive index and absorption index

• Flexible choice of computation wavelength range (within the PC based spectrometer)

- Flexible choice of guess thickness range to minimize computation time
- Convenient selection of film and substrate materials from an included database of various film and substrate materials
- Convenient addition of new material data table

Specifications

Measurement Range	20 nm to 50 µm (Thickness only), 100 nm to 10 µm (Thickness w/n & k)
Measurement n & k	Easy measurement of n & k with known film thickness
Measurable layers	Up to 4 layers
Spot size	Adjustable 0.8 to 4 mm
Sample Size	> 1 mm
Wavelength Range	380 nm – 1000 nm
Thickness Accuracy	The grater of ± 1 nm or ±0.5% of thickness
Measurement Speed	0.5 sec – 60 sec
Repeatability	0.1 nm
Platform Size	178 mm × 178 mm
System Size	203 mm Width, 241 mm Depth, 355.6 mm Height
System Weight	~ 11 lb

Example thin film layer

SiO ₂	CaF ₂	MgF ₂	Photoresist	Polysilicon	Amorphous
SiNx	TiO ₂	Sol-Gel	Polyimide	Polymer Film	

Example substrate material

Silicon	Germanium	GaAs	ZnS	ZnSe	Acrylic	Sapphire
Glasses	Polycarbonate	Polymer	Qua	rtz		

Thin Film Measurement System

- One Thin Film Measurement main machine (110V-240V AC input) Including a Tungsten Halogen light source and a PC based optical mini spectrometer with USB interface
- Beam transfer, projection, and receiving fiber cables and optical assemblies
- New Span Thin-Film Measurement Software version 5.1
- One silicon wafer as reflectance standard
- One thickness standard sample
- PC requirement: RAM > 1GB, Windows 2000, XP, Vista, 7, 8
- Optional: C-mount adaptor and long fiber for microscope measurement (TF-168M)

